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Abstract-A number of different equilibrium helical buckling configurations for a tubing or drill
string confined within a cylindrical casing or hole of larger radius and buckled under static com
pressive forces are determined. Our work is more general and informative than earlier work since
the solutions relating the buckling load and the postbuckling configuration are given explicitly for
the string of weight and at any inclined positions. A consideration of the state of transient string
buckling when the string undergoes sudden change in the helix radius and might lose contact with
the hole wall is also proposed.

I. INTRODUCTION

Whenever applied or gravity-induced compressive forces reach some critical magnitude, a
long and slender tubing or drill string radially confined in a cylindrical hole will be buckled.
The postbuckling of a tubing-drill string in a cylindrical hole (or casing) is of significant
importance to the tubing design and drilling operation in petroleum and other drilling
industries. The buckled configuration of the tubing or drill string will have serious conse
quence for the life of the tubing or drill pipes, the rock breakage as well as the resulting
hole trajectory. The relations of sufficiently general analysis of the buckling of the strings
will therefore lead to an understanding of methods by which the difficulties encountered in
drilling and production operations described above may be reduced. Due to this long
standing general interest, a number of researchers have presented their work on the behav
iour of the buckled tubing and drill string. The investigation of the helical buckling of a
tubing string subjected to an applied compressive force was first conducted by Lubinski et
al. (1962). Since then, a number of authors [see for instance, Paslay and Bogy (1964),
Dawson and Paslay (1984), Cheatham and Pattilo (1984), Mitchell (1988) and Kwon
(1988)], have attempted to analyse the string buckling by different approaches and in a
more accurate way.

The deformation of the buckling configuration of a tubing-drill string under applied
axial loads is a stability problem. Lubinski and Cheatham treated the drill-tubing string as
a weightless helix in contact with the hole wall along its entire length. The relationship
between the applied axial forces and the pitch of the helix for the string in its buckled
configuration were obtained. These results are applicable to a weightless string of infinite
length. String weight has a significant effect on the buckling. It is common practice that the
strings are compressed only in the lower sections and buckle under their own weight. Paslay
and Bogy (1964) included the string weight in their work and assumed that the buckled
string took the shape of a Fourier function. The string remained in contact with the hole
wall along its entire length and throughout the deformation-buckling process. However,
no quantitative solution was arrived at for the configuration of a buckled string. Applying
the slender beam theory, Mitchell (1988) and Kwon (1988) extended Lubinski's helical
buckling model by assuming a varying helical pitch for strings with weight. However, the
explicit solution could be obtained only in vertical holes, which took a similar form to
Lubinski's with the buckling force term as a variable. Their emphasis was placed on the
study of the string buckling below the neutral point above which the string was subjected
to tensile loads.

In the present paper, we present the explicit solutions to the helically buckled string in
any inclination angle. The string is subjected to both a concentrated axial force at one end
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and gravitational distributed forces along the entire string. The behaviour of drill-tubing
strings under static compressive loads is under consideration here. However, we show in
our model, that under appropriate increasingly applied static compressive loads, a buckled
string can assume a number of discrete stable equilibrium configurations (modes) in each
of which the drill string will be buckled into a helix of definite pitch. In suddenly passing
from one buckled mode to the next, we also suppose that the string undergoes a process of
so-called (unstable) "transition buckling", in which a portion of the drill string may
instantaneously lose contact with the hole walL Critical buckling loads, in terms of helix
pitch, string stiffness and weight, hole clearance and inclination, and applied axial loads
obtained from our model in a number of special cases are also compared with those from
Lubinski el til. (1962), Dellinger el al. (1983), Dawson and Paslay (1984). Mitchell (1988)
and Gere and Timoshenko (1990).

2. CONFIGURATION GEOMETRY FOR A BUCKLED STRING

A drill string is slender. For instance, a 6 3/4-in-diameter drill string can be over 1000
ft in length and is confined in a 8 3/4-in-diameter hole. A similar situation is also seen for
the tubing string, which is employed after the accomplishment of the oil welL Under the
action of the applied axial force and gravity forces (the weight of the string), the long and
slender string will buckle in the narrow space bounded by the surrounding hole wall (a
circular cylinder). It is assumed that when the drill string buckles and is in a state of stable
equilibrium, its configuration will be defined by a helix (corresponding to the buckled drill
string axis). The geometry of the helix is shown in Fig. 1(a). A "half-wave" of the helix
(whose radius r is equal to the difference between the hole radius and the string radius), is
generated by wrapping the triangle ABC [Fig. 1(b)] around the cylinder surface of radius
r in Fig. 1(a). Then, I defines the "pitch" corresponding to one half-wave length of the
helix. We then have the following parametric equations defining the helix shown in Fig.
l(a)

x = r cOS"r'

y = r SIn";'

( 1)
IT

where x, y, z are the coordinates of a representative point on the helix and y is the angular
coordinate.

Also from Fig. 1, the helix raising angle is given by

sin ¢ = (2)

If L is the total helical string length and n the number of half-waves (mode number) into
which the string is assumed to buckle, we then have

and

y = nIT.

(3)

(4)

In Fig. 1(a), the hole axis is the z-axis and inclined at an angle IX to the verticaL The x-axis
is so chosen that the x-z plane is a vertical plane.

From equation (A7) in the Appendix, we have for radius of curvature R of the helix
as follows
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Fig. 1. The configuration of helically buckled drill (tubing) string. (a) The helix string confined in
a cylindrical hole. (b) The helix half-wave expanded in a plane.

(5)

3. THE TOTAL ENERGY OF THE SYSTEM

In this work it is supposed that we have a conservative mechanical system. In particular,
for example, the effect of frictional forces between the string and the hole wall are ignored
and, under the action of external forces the string undergoes purely elastic (recoverable)
deformations. The equilibrium of the buckled string can then be discussed by considering
the conditions under which the total energy of the system (composed only of the strain
energy in the buckled string and the potential energy of the forces acting on the string) will
assume a relative minimum (Langhaar, 1962).

3.1. Strain energy in the buckled string
Since the string is constrained by the hole wall, it undergoes small deflections and so

the torque generated due to the curvature of the string as it buckles into a helix is ignored



2678 X. C. TAl'; and P. J. DIGBy

[see Landau and Liffshitz (1970)J and the strain energy stored in the string, Ut due to
couples tending to twist the drill string about its axis (in torsion) is negligible. Also the
strain energy, Ue stored in the string due to compressive forces acting on the string undergoes
little change compared with the strain energy, l.'" stored in the string due to bending
moments acting on the string and lie can therefore be assumed to be constant. Thc curvature
of the string in its buckled helical configuration is constant [see eqn (5)J. From eC1l1 (A 11)
the strain energy stored in the string in its deformed contlguration due to bending moments
acting on it may therefore tlnally be written in the form

(6)

In eqn (6), Eis the Young's modulus of the string, and I its radius ofgyration, both assumed
constant. Land L c are the lengths of the string before and after compression.

3.2. Potential energy 4 the external strings
When the string deforms and is in a state of static equilibrium, we suppose that its

configuration is defined by a helix. As in Section 2 (see also Fig. I), we suppose that s

denotes the are length on the helix measured from the bottom Po of the string to the
representative point P(x, y, z) on the helix. !1L(s) and 1:(,1') denote the component of dis
placement (tangential to the string) and tensile strain in the string respectively, measured
at the point P.

The force acting on the helix at the point P is composed of the weight of the section
of the string above P and the applied thrust F at the upper end of the string. The total force
acting on the helix at the point P [see Fig. I (a)J is therefore given by

Fr = q(L-s)sin Yi,-[F+lj(L-s)cos::x]L (7)

where q denotes the weight of a unit length of the string. The component of this force in
the direction tangential to the local string axis at P [see eqns (A2)] is therefore given by

Fr.(s) = t· F I

q(L- s) cos cP sin }' sin::x - q(L - ,1') sin cP sin (x- F sin (/!. (X)

The compressive strain E(S) at the point P on the helix due to the forces f~(s) is given by

(9)

and the displacement of the point P to the helix is therefore

!1L(s) = f' 1:(8) ds
Jo

I [ . (. . L' ' d I' . A-.J= -- EA qr S111 IX tin - S cos i'l + U. SIl1 ,p + 5.qr cos ::x SIl1 'V

from which, the displacement of the top end is

( 10)

!1L(L) = LE(S)dS= - ~A[qrLsin::X+FLsinl/)+~qCcos::xsin(p}. (11)

The potential energy of the externally applied force F is therefore
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Fig. 2. Potential of the helix drill string.

UpF = Fsin rP (L+I1L(L))

_ . (_ F sin.f _ qL cos 0: sin rP qr sin ~)
- FL sm rP I EA 2EA + EA

~ FL sin rP (12)

where in the above we have supposed that the dimensionless terms FlEA, qLIEA, qrlEA
and qt/EA are all much smaller than unity.

The potential energy of the forces acting on the string due to its own weight are
obtained by integrating the potential energy due to the weight ofa small length of the string,
ds. Thus the potential energy of the string due to its own weight (see Fig. 2) is obtained as

Upq = lL

(s+I1L(s)) cos 0: sin rP q ds+lL

qr sin 0: (I-cos y) ds

1 2 . A. ( F sin rP qL cos 0: sin rP)
= 'lqL cos 0: sm 'f' 1- ET- - 3EA

. q 2Ltr . .
+ qLr sm 0: - nEA sm 0: cos 0: sm rP

~ ~qL2 cos 0: sin rP+qLr sin 0:. (13)

In the above equation, we have again supposed that the dimensionless terms FlEA, qLIEA,
qr/EA andqt/EA are all much smaller than unity.

3.3. The total energy of the system
The total energy of the system will be equal to the sum of the strain energy stored in

the string and the potential energy of the external forces acting on the system.
From eqns (6)-(13) above, the total energy of the system will be
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V= Ub+Uc+Ut+Upv+Upq

n 4 EILr"
~ ')4 +FL sin 4)+ ~qe cos rx sin cP+qLr sin cx+ U,

~I

n"r" L
21 2 ... (F+ ~qL cos rx) + qLr sin rx

+ FL+ ~qe cos cx+ Ue ( 14)

4. CRITERIA OF EQUILIBRIUM AND STABILITY FOR THE STRING

4.1. Criteria ofequilibrium
A necessary and sufficient condition for the string to be in a state of equilibrium in its

deformed configuration [a helix of pitch t and radius r, see eqns (1)] is that the first order
variation <5 V of the total energy of the system given by eqn (14) be zero for arbitrary
variations <51 and <5r. From eqn (14) the condition for the system to be in equilibrium is
therefore

av av
<5V =-<5t+ (5rat or

= o. (15)

To obtain explicit criteria for equilibrium and stability, let us consider the variation in I

and r respectively.
First consider the case in which the helix radius is maintained constant, that is, br = 0

but bt oF O. The equilibrium criteria expressed as the relation between the critical buckling
loads F, g and the helix pitch t, will be, from eqns (15) and (3),

I 2Eln 2

F+ 7qL cos rx = , ..
- t-

For convenience, we define the function

2Eln 2n2

["
(16)

P = F+ ~qL cosrx

and eqn (16) can then be written in the form

(17)

(18)

Consider then the case in which the helix pitch is maintained constant, that is, bt = °but
br -=F 0, we have, by substituting eqns (3) and (17) into (15)
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E/n2 qt2sin rx
P=T+~2-

2(n)2 q sin rx (L)2=n E/ - +-- - .
L n 2r n

Letting dP/dt in eqn (19) equate to zero, we obtain the minimum load

(
Elq sin rx)112

Po = 2
r

corresponding to the pitch

to = n( ~Ir )1
1
4

q SIll rx
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(19)

(20)

(21)

4.2. Stability criteria
The necessary and sufficient condition for the string to be in a state ofstable equilibrium

in its deformed configuration is that the second order variation <F V of the total energy of
the system given by eqn (14) is always positive, that is

(22)

for arbitrary variations in br and bt. However, we will obtain the criteria of stability for the
cases either bt =f 0 and br = 0 or br =F 0 and bt = 0, so that we can examine the stability of
the corresponding equilibrium states [eqns (16) and (19)] obtained in Section 4.1.

From inequality (22), the stability criterion for the case in which the helix radius is
maintained constant, br = 0, but bt =F 0 is given by

I lOE/n 2

F+2qL cos rx <~

or

(23)

Similarly, the stability criterion for the case in which the helix pitch is maintained constant,
bt = 0, but br =F 0 is given by

Eln 2

F+1qL cos rx < -2
t

or

E/n 2P<-2-·t
(24)

5. DESCRIPTION OF THE STRING EQUILIBRIUM STATES

The conditions for the string equilibrium in its postbuckling condition [eqns (16) and
(19)] together with the corresponding conditions for stable equilibrium [inequalities (23)
and (24) respectively], for the cases br = 0, bt =f 0 and bt = 0, br =F 0 respectively will now
be discussed below.

SAS 30: 19-G
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Fig. 3. Criteria of equilibrium and stability. (al Continuous buckling: (b) transition buckling.

5.1. Equilibrium ol the string fiJI' the case in which the buckled string has constant helix
radius, that is, i5r = 0, hut bt #- 0

It is supposed here that the drill string is deformed into a helix whose radius remains
constant. In this case. the string remains in contact with the drill hole wall along its entire
length, throughout the process of deformation and buckling as the symbolic load variable
P [eqn (17)] varies. The equations of equilibrium which relate P to t [eqn (I8)] are
plotted in Fig. 3(a) [curve (I)] and the corresponding stability criterion [inequality (23)] is
represented in the same figure as the area below curve (2). Here, it can be seen that the
equilibrium curve lies completely inside the region for stable equilibrium of the string. Any
equilibrium configuration of the string where it is initially in contact with the drill hole wall
and in which contact is maintained (()r = 0) will be one of stable equilibrium. where the
drill string deforms into a helix whose radius I' remains constant, but whose pitch t varies
continuously with the load P [eqn (18)].

5.2. Equilibrium ol the buckled string for the case in which the helix pitch is maintained
constant, that is bt = O. but ()r #- 0

We suppose here that any change in the helix radius, where the drill string loses
contact with the drill hole wall, would have occurred over a very small interval of time
("instantaneously"). The actual equilibrium load P [equation (19) in this case] is plotted
as a function of the helix pitch t [curve (I) in Fig. 3(b)]. Here, it can be seen that the curve
(I) lies completely outside the region bounded by curve (2) [inequality (24)] defining the
configurations for stable equilibrium of the string. Any equilibrium configuration of the
drill string for which contact with the drill hole wall has been initially lost. and in which
the helix radius is allowed to vary (()r #- 0) will therefore be one of unstable equilibrium.
In this case it appears reasonable to suppose that in regaining contact with the drill hole
walL the drill string geometry will undergo a discontinuous (finite) change in passing from
one stable equilibrium configuration to another.

5.3. Relations between diflerent equilibriwll states of the string
Curve (3) in Fig. 3(b) corresponds to the equilibrium configuration for the continuous

buckling process [eqn (18)]. It intersects the equilibrium curve (I) for the transition buckling
[eqn (19)] for the case of non-vertical holes at the point (to, Po) [see eqns (20) and (21 )].
The distinct stages in the buckling of the string may therefore be defined from the boundary
point (to, Po), if we assume that the string will buckle at the smallest critical load. The string
buckling will thus take place in a form of either the continuous buckling or the transition
buckling. Assume that the buckling load is applied gradually, the string will undergo
"continuous buckling" in the initial stage when P < Po. Here, the drill string is initially in
contact with the drill hole wall and the helix radius I' is maintained constant (br = 0). In
this case, we have stable equilibrium and the drill string has deformed into a helix whose
pitch t varies (i5t #- 0) continuously with the load P. So long as contact of the drill string
with the drill hole wall is maintained, the "buckling mode" number (n), that is. the number
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of half-waves of helix into which the string is deformed [eqn (3)] will also be changed
continuously as the load P is varied. Once the load P reaches the critical value Po [eqn
(20)], a transitional stage in buckling will occur where in resuming contact with the hole
wall, the helically buckled string will undergo a discontinuous (finite) change in passing
from one stable equilibrium configuration to another. Here, a sudden (finite) jump in the
buckling mode number n will occur. During this process, the string has instantaneously lost
contact with the drill hole wall.

It can be observed that transition buckling [curve (1) in Fig. 3(b)] usually occurs at
rather large buckling loads (for non-vertical holes) and continuous buckling is more likely
to occur when the load is relatively small.

6. PARAMETRIC ANALYSIS OF HELICAL BUCKLING

The effects of the general variables on the string buckling configuration are to be
examined individually below.

6.1. Effect ofbuckling force
Buckling forces determine directly the string buckling. The relationship between the

buckling load P and the helix pitch t can be clearly observed from eqns (16) and (19), which
are shown schematically in Fig. 3(a) and (b) (curve 2). The effect of buckling load on the
form of buckling and the postbuckling configuration has been described in detail in Section
5.

6.2. Effect ofhole inclination
The critical load Pcr for transition buckling [eqn (19)] is plotted as a function of the

helix pitch t for different drill hole inclinations to the vertical in Fig. 4. In these plots, the
numerical values of the other parameters in eqn (19) are

EI = 2.8 x 10 5 N m- 2 r = 0.02 m

q=197Nm- ' v=0.3.

It can be seen from this figure that for any given pitch t, the horizontal string (ex = 90°) has
the largest buckling load. For a vertical string (IX = 0°), the last term in eqn (19) vanishes
and this plot corresponds to that from eqn (24) which defines the boundary of the region
for stable equilibrium in transition buckling. So for holes near vertical, the load given by
eqn (19) is always less than that by egn (16). In this case, to approaches infinite [egn (18)]
and Po is close to zero. So transition buckling will seemingly dominate the whole buckling
process for any buckling load P> O. For the remaining hole inclinations (IX "# 0°), the
corresponding minimum critical loads Po for transition buckling [egn (20)] coincide with

z
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Fig. 4. The effect of hole inclination on the buckling load.
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the points of intersection of the set of curves in Fig. 4 with the equilibrium curve [equation
(16)] for continuous buckling. For small values of the angle r:t. (where the drill hole is nearly
vertical), these points of intersection correspond to large values of to and small values of
Po·

From eqn (19) for continuous buckling, the symbolic load P and buckling pitch I are
not affected by the hole inclination angle. However. the applied force F [eqn (17)] required
to produce the same buckling on the string increases when (J.. increases, which is to com
pensate the part of the axial load reduced due to the change in the string inclination (weight
component along the hole axis).

In summary, the buckling load in transition buckling in highly inclined holes is more
sensitive to the hole inclination change. Since the transition buckling loads in this situation is
much larger in magnitude compared to that in continuous buckling, the form of continuous
buckling will dominate. However, in nearly vertical holes. transition buckling is more likely
to occur.

6.3. Effecl afhale clearance (helix radius r)

The critical load P", for transition buckling [eqn (19)] is plotted as a function of the
helix pitch I for several hole clearances (r = 0.01-0.025 m for an inclination of (J.. = 15) in
Fig. 5. In these plots, the numerical values of the other parameters in eqn (19) have the
same values as those given in Section 6.2. It can be seen from this figure that for any given
pitch I, the buckling load increases with decreasing hole clearance. A smaller hole clearance
is therefore preferable if a string is to withstand larger buckling loads.

For the case ofcontinuous buckling, the hole clearance r does not influence the buckling
load or the helix pitch.

6.4. Effecl oj'slring densil)' and sli/f,less
It can be seen from eqn (16) for continuous buckling that given a constant applied

axial force at the top end, the string buckling increases with increasing string density q. On
the other hand, if a constant load is to be maintained at the lower end. as is required in
some case of drilling, for which the lower buckling load can be readily expressed as

W = F+qL cos Cf.

or from eqn (17),

(25)

By applying eqn (25) into eqn (16) and assuming a constant W, we can easily see that larger
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q causes less buckling to the string. A similar conclusion will be arrived at for the form of
transition buckling.

As the string stiffness EI increases, the applied forces both for continuous buckling
[eqn (16)] and for transition buckling [eqn (19)] increases to produce the same string
buckling. So large stiffness will reduce the string buckling significantly.

7. COMPARISON OF OUR RESULTS OBTAINED WITH THOSE IN EARLIER WORK

7.1. Weightless string
Lubinski et al. (1962) considered the behaviour of a weightless string in the process of

"continuous buckling". Our expression for the load-pitch relation [eqn (16)] is identical to
that obtained by Lubinski et al. (1962) and Cheatham and Pattilo (1984) when we equate
q to zero in the equation. The processes of unconstrained buckling considered by Gere and
Timoshenko (1990) and unloading considered by Cheatham and Pattilo (1984) are
equivalent to our case of transition buckling [eqn (19)], in which the string is not or no
longer constrained by the hole wall. The load-pitch relations also coincide when we assume
the same condition q = O. Their results can be taken as a special case, i.e. q = 0 in our
solution.

The buckling load-pitch relation obtained by Paslay and Bogy (1964) for the drill
string in a state of unstable equilibrium in the case of weightless string may be written

(1- V)2 n 2Eln 2

Fer = (I +v)(1-2v)-~' (26)

For the special case in which Poisson's ratio v = 1/3, this becomes identical to our expression
(19) (with q = 0) for the critical buckling load in transition (unstable) buckling.

7.2. String ofweight
Explicit results given in others work are available in several special situations and are

cited below for comparison.

Horizontal hole. In the horizontal hole (a = 90°), the critical buckling load obtained
from Paslay and Bogy's model when the drill string is in a state of unstable equilibrium is
given by

(27)

This is identical in form to our expression (19) (with a = 90°) again for the case of transition
buckling, but the former predicts a smaller buckling load due to the factor (1- v) in the
second term.

Vertical hole. Mitchell (1988) and Kwon (1988) obtained the buckling force-pitch
formula for the continuous buckling and varying helix pitch, which is written below as

(28)

It takes a similar form to that from Lubinski et al. (1962) but with Fer equating to the axial
load at the calculated point on the string. For a long string in suspension, that is, the lower
part in compression and the upper part in tension, the buckling helix pitch is calculated by
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(29)

where Z is measured from the neutral point where axial force is zero down to the point
under consideration. The difference between their formula [eqn (28)] and ours [eqn (16)J
lies in the estimation of buckling force. The buckling load in eqn (29) varies along the string
and hence results in a monotonous decrease in the pitch t as Z increases. while the buckling
load on the left side of eqn (16) is constant. which is equal to the axial load at the middle
point. Consequently, a constant pitch is achieved as is assumed in Section :2

Inclined hole. The results from our formula [eqn (19)] and from Paslay and Bogy
(1964) are shown in Figs 6 and 7 respectively for comparison. In these figures the buckling
loads Wat the lower (bit) end were plotted against the string length L at different buckling
mode number n. Substituting eqn (25) into (19), we have the load ff/ plotted against L
shown in Fig. 6. The following numerical values were used for the parameters to obtain the
curves in the two figures,

F= 3x 10 PSt r= I in.

I = 99.2 in l
'l. = 5

If = 8.55 Ib in 1 \' = (U.

---"-'*---"~--,

I

n=4

\ I I \ I I
\ I \ \ I sf

\/ \ " \: :: i
~C) II i
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!
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Fig. 7. Critical bit load versus the length of drill sIring (Paslay and Bogy's finite Fourier series
model).
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It can be seen that the plots obtained in Figs 6 and 7 are similar and the critical bit weights
obtained from our helical model are larger.

Dellinger et al. (1983) used an empirical formula for the minimum applied critical
buckling load, Fer. This was derived directly from experimental results obtained by Lubinski
et al. (1962) :

(
sin a)O 436

Fer = 2.93 (El) 0479qO 522 -r- (30)

Another formula from Dawson and Paslay (1984)

_ (Elq sin a)112
Fer - 2

r
(31)

was modified from Paslay and Bogy's (1964) buckling criterion for horizontal holes and
was designated for the case of inclined holes. Eguation (31) denotes the minimum buckling
force with respect to a specific pitch for the transition buckling. It is worth noticing that
both the formulae [egns (30) and (31)] are not concerned with the total string weight.

Our minimum critical buckling force for transition buckling from egns (17) and (20)
is written again

(
Elq sin a)1/2 I

Fer = 2 r - 'iqL cos a. (32)

The buckling force Fer in egns (30)-(32) has been plotted as a function of hole inclination
a in Fig. 8 [curves (1)-(5)] respectively. The last three curves (3)-(5) correspond to the
results from egn (32) for different string lengths, namely L = 50, 100, 150 m respectively.
The numerical values selected for the other relevant parameters are the same as those given
in Section 6.2.

Figure 8 indicates that general trend of variation is observed for egns (30)-(32). Our
egn (32) predict the smallest buckling force Fer at the upper end and the empirical formula
[egn (30)] provides the largest buckling force. Dawson's formula [egn (31)] can be con
sidered as a special case of our egn (32) at L = O. Compared with the other two buckling
formulae, our formula predicts a more reasonable buckling force depending on the total
string weight (total length). The longer the string length is, the smaller the applied buckling
force will be.
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8. DISCUSSION

In the present paper, the equilibrium of a uniform drill and/or tubing string buckled
under gravity and applied compressive forces, and confined within an inclined cylindrical
hole ofconstant larger radius has been considered. Our assumptions regarding the geometry
of the buckled drill string (so long as contact with the drill hole wall is maintained) follows
that adopted by some of the earlier authors (Lubinski. 1962; Cheatham, 1984). Thus. we
suppose that under the action of compressive forces, the string will deform into a helix of
constant radius. We have shown in Section 5.1 that this configuration corresponds to one
of stable equilibrium where the string has deformed into a helix whose pitch t and also thc
buckling mode number vary continuously with the applied axial thrust P as the axial thrust
is varied. We have also considered the interesting case, not previously studied, that as the
applied axial thrust P exceeds a critical value, the drill string can assume an unstable
equilibrium configuration (see Section 5.2) in which contact with the hole wall is lost. It
was suggested that an unstable configuration of this type is necessarily assumed when the
drill string geometry undergoes a sudden (finite) change in passing from one stable equi
librium configuration to another.

In Section 7.1, we have shown that the result of Lubinski et al. ( 1962) and Chea tharn
and Pattilo (J 984) was for weightless string and considered only the effect of the applied
load. It is a special case of our general sol utions [eqns (16) and (19)]. The incl usion of string
weight will give a smaller helix pitch since the string weight also contributes to the buckling.

As has been mentioned in the introduction to the present papcr. Paslay and Bogy's
work (1964) is interesting because the assumed buckled equilibrium configuration of the
string differs from that assumed by both ourselves and most other authors. It was supposed
that the buckled configuration of the string was given by the expression

\ /In::;
. = L a sin
, ,I I L

(33)

where (liS are constants to be determined by solving a system of equations derived by the
energy method. Thus, in eqn (33) the angular coordinates "r' of any point on the buckled
string was supposed to be a periodic function (finite Fourier series) of the height of the
point, z, above the string base. The string was subjected to the action of both gravitational
and applied axial forces. Closed form buckling load-pitch relations are readily obtained
from Paslay and Bogy's work in only a number of special cases. Comparison between our
results and those of Paslay and Bogy (1964) in several typical cases, that is, weightless.
horizontal and inclined strings [see eqns (19), (25), (26) and Figs 6, 7] indicates that our
critical loads are larger than those predicted by Paslay and Bogy (1964). This follows as a
result of different assumptions for the buckled string configuration (Timoshenko, 1986).
However, these two assumed initial string equilibrium configurations do not induce a
significant difference in the magnitudes of the critical buckling loads.

Dawson simplified Paslay and Bogy's critical buckling formula for strings in inclined
holes and assumed infinite string length. The buckling force equation (31) was obtained by
calculations similar for deriving eqns (20) and (21). So it specifies the minimum buckling
force at some pitch [similar to eqn (21 )]. Equation (31) takes a similar form to our eqn (32)
(except the last term). Since it does not consider the total weight (length) of the string. it
will give a larger applied buckling force for the same buckling mode or pitch [eqn (3 J)]. In
addition, it seems that there was a calculation error in the equation that a factor (~)!

(~ 1.22) on the right side of eqn (31) was missing [see eqn (33) in Paslay and Bogy's work
and eqn (AI) in Dawson's], which means the formula will give an even larger Flr (1984).
Therefore, the buckling force predicted by Dawson's formula [eqn (31) after correction] is
the largest compared with eqns (32), (30) and Paslay and Bogy's results (1964). So Dawson's
simplification of Paslay and Bogy's formula for inclined holes overestimated the buckling
force. The empirical formula [eqn (30)] gives the second largest buckling force, This might
be explained by the fact that. in actual string buckling, resistance will be encountered in
hole wall-string contact, thus a larger force would be needed. It also has to be noticed
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(34)

that eqns (30) and (32) are applicable to non-vertical strings in transition buckling. For
continuous buckling, eqns (16) and (28) should be used. Which form the string buckling
will take is dependent on the concrete buckling load as has been concluded in Section 5.3.

We have also concluded in Section 5.3 that in the vertical situation, the transition
buckling [eqn (19)] appears to be the dominant form of buckling. However, it can be
expected that in a real string buckling situation, this process can only occur on a few
occasions of specific confining and loading condition, because the wall-string friction might
resist the free jump of the string from the hole wall. Therefore, the continuous buckling
[eqn (16)] will, in general, govern the buckling process.

It is also noted that our assumption of a constant helix pitch is an approximation. In
reality of string buckling, a variable pitch along the string is more reasonable. This was
adopted in Mitchell and Kwon's analysis. For the special case ofvertical holes, the formulae
obtained by Mitchell [eqn (28)] considered a changing load along the string from zero to
qL (total string weight below neutral point) and our solution [eqn (16)] takes a constant
load equating to the average load at the middle point (~qL, half the string weight below
neutral point) along the entire string. Comparing them quantitatively, we find that provided
the same applied buckling force and/or string weight, the helical pitch calculated from our
formula [eqn (16)] will be smaller for 0 < Z < L/2, exact at Z = L/2 and larger for Z > L/2.
So our solution emphasizes the average effect of the axial load on the string buckling
configuration and is proper for describing the buckling configuration of low buckling mode.
However, by assuming the simplified buckling configuration, we obtained the concise and
explicit analytical solution to the string buckling in general inclination situations. Whereas
under the varying pitch assumption, an exact and explicit solution was arrived at only for
the vertical situation. For other inclination cases, numerical methods must be used. These
are tedious and time consuming. Certainly, our general solution is gained by losing some
accuracy in characterizing the local buckling configuration. Here, we attempt to minimize
this error by modifying the buckling formula [eqn (16)] according to the relations of these
two models [eqns (16) and (29)] for the case of vertical hole. Assuming that in inclined
holes, these two solutions have the same relation at the middle point, then our buckling
force and pitch are equal approximately to those from the differential equation by numerical
method (Mitchell, 1988). Therefore we obtain the changing pitch along the buckled string
from our modified formula

2n 2£1
F +qZ cos ex = -~)-2

t(Z

for any inclined strings, where Z is measured from the neutral point downwards.
In the above, a buckling formula for varying pitch configuration is obtained explicitly

by considering the features of our solution [eqn (16)] in relation to the explicit solution
[eqn (28) of the deferential equation, Mitchell (1988)] available only in a special case. This
approximate eqn (34) coincides with eqn (29) exactly in the vertical situation and thus is
believed to be of acceptable accuracy in inclined holes. It simplifies greatly the buckling
analysis for inclined strings in continuous buckling and is meaningful for the tubing design
and analysis of drill string situations.

It has to be mentioned that the wall-string friction is not dealt with in our analysis,
which will naturally cause some errors in describing the string postbuckling configuration.
The problem studied in the present paper is also idealized in the sense that the treatment
of the string buckling as a static problem. However our work presented in the present
paper disclosed a useful estimation of postbuckling configuration and some interesting
characteristics of the helical buckling process. It reveals the effects of the general string and
hole parameters on string buckling, which provide hints for the measures to combat the
string buckling. All these stimulate further study on helical string buckling in cylindrical
holes.

9. CONCLUSIONS

(1) Explicit and general solutions for the helical buckling of tubing and drill strings
using energy method are obtained.
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(2) The buckling analysis has lead to two forms of buckling in which the transition
buckling can occur for some speci/lc cases and the continuous buckling will in general
dominate the buckling process.

(3) An approximation is proposed for continuous buckling formula. which prcl\Ides
an cxplicit formula for string buckling with varying helix pitch in any inclination position.

(4) The buckling forces for inclined strings in transition buckling predicted by our
model are smaller than those by the earlier formulae introduced by Dawson and Paslay
(1984) and Dellinger c/ ill. (1984). The total string weight (length) is considered in our
calculation.
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APPENDIX

A I. Con/iyurulioll y('oll1<'/rr oj/he huck/cd drill rod
Thc position vcctor of the representative point (Y. \.~) (Fig. I) on thc hclix is givcn 11\

(;\ II

and the unit tangent vector of the helix at this point is givcn hy :

where. s = the arc length of the helix and is measured from the lower cnd [sec also Fig. I (h)].
Then

(;\ 2)

and so

'j'. di
ds

df
ds

() (;\3 )

(A4)

where N denotes thc principlc normal to the hdix and thc scalar

denotes thc curvaturc of the helix, Also.

I
Ie oc

R

dtl
Ids i
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Fig. A I. Deformation of a drill string under the action of bending moments.

dt dy
ds = (-cos 4J cos y, -cos 4J sin y, 0) (h

cos 2 4J
= -(cos y,sin y,O)-r-'

We then have for the curvature radius of the helix

I 2
R = k = r sec 4J.

(A6)

(A7)

A2. Strain energy stored in the buckled string due to bending
From Fig. A I, the bending moment M which must be applied to a uniform string to bend it into a curve of

constant radius of curvature R is given by

(A8)

where A denotes the cross-sectional area of the string and y is the distance of the point of separation of the force
IT u dA from the buckled axis of the string. Also from Fig. A I

and so

(R+y)d8-Rd8
6x = R dO

y

R
(A9)

(A 10)

where E and I are the Young's modulus and radius of gyration respectively of the string (also assumed constant).
The strain energy stored in the string is 1/2 (Ji/S;; per unit volume. The strain energy stored in the string due to
bending is therefore given by

If If yElL
U b =2 ITs(LdA)=2 (JR LdA =2R 2 ' (All)


